首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42185篇
  免费   3411篇
  国内免费   4563篇
化学   32570篇
晶体学   183篇
力学   513篇
综合类   683篇
数学   6741篇
物理学   9469篇
  2023年   387篇
  2022年   573篇
  2021年   1555篇
  2020年   1291篇
  2019年   1252篇
  2018年   958篇
  2017年   985篇
  2016年   1352篇
  2015年   1397篇
  2014年   1726篇
  2013年   3221篇
  2012年   2052篇
  2011年   2272篇
  2010年   2122篇
  2009年   2539篇
  2008年   2800篇
  2007年   2965篇
  2006年   2369篇
  2005年   1716篇
  2004年   1647篇
  2003年   1613篇
  2002年   1320篇
  2001年   1238篇
  2000年   888篇
  1999年   708篇
  1998年   666篇
  1997年   533篇
  1996年   604篇
  1995年   539篇
  1994年   543篇
  1993年   567篇
  1992年   540篇
  1991年   351篇
  1990年   299篇
  1989年   236篇
  1988年   252篇
  1987年   201篇
  1986年   213篇
  1985年   324篇
  1984年   236篇
  1983年   145篇
  1982年   290篇
  1981年   468篇
  1980年   425篇
  1979年   466篇
  1978年   370篇
  1977年   283篇
  1976年   237篇
  1974年   76篇
  1973年   150篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
71.
Benzyl-substituted boronates and borates are widely employed as mild sources in radical or anionic transfer reactions of benzyl entities. In this process the B−C bond to the benzyl moiety is essentially ruptured. In contrast, reactions with retention of the B−C bond are poorly investigated although several other reactive sites in benzyl–boron systems are clearly inherent. In this respect, the novel reactivity of the representative borane adduct IiPr−BH2Bn [IiPr=:C{N(iPr)CH}2, Bn=CH2C6H5] is demonstrated. Dihalogenation of the BH2 entity is observed with BCl3 and BBr3, whereas BI3 either affords IiPr−BHI2 or proceeds with borylation of the aromatic phenyl ring to give a hydride-bridged bisborylated species. The photochemical mono- and dihalogenation of the benzylic CH2 group was demonstrated with elemental bromine Br2. The brominated product IiPr−BBr2−CHBr−C6H5 was borylated at the benzylic carbon atom in an umpolung event with BI3 to afford the zwitterion IiPr−BI−CH(BI3)−C6H5.  相似文献   
72.
In this work, the first example of a radical stereodivergent reaction directed towards the stereoselective synthesis of both (R*,R*)- and (R*,S*)-2,2′-biflavanones promoted by samarium diiodide is reported. Control experiments showed that the selectivity of this reaction was exclusively controlled by the temperature. It was possible to generate a variety of 2,2′-biflavanones bearing different substitution patterns at the aromatic ring in good-to-quantitative yields, being both stereoisomers of the desired compounds obtained with total or high control of selectivity. A mechanism that explains both the generation of the corresponding 2,2′-biflavanones and the selectivity is also discussed. The structure and stereochemistry determination of each isomer was unequivocally elucidated by single-crystal X-ray diffraction experiments.  相似文献   
73.
We develop the chemistry of boron difluoride hydrazone dyes (BODIHYs) bearing two aryl substituents and explore their properties. The low-energy absorption bands (λmax=427–464 nm) of these dyes depend on the nature of the N-aryl groups appended to the BODIHY framework. Electron-donating and extended π-conjugated groups cause a redshift, whereas electron-withdrawing groups result in a blueshift. The title compounds were weakly photoluminescent in solution and strongly photoluminescent as thin films (λPL=525–578 nm) with quantum yields of up to 18 % and lifetimes of 1.1–1.7 ns, consistent with the dominant radiative decay through fluorescence. Addition of water to THF solutions of the BODIHYs studied causes molecular aggregation which restricts intramolecular motion and thereby enhances photoluminescence. The observed photoluminescence of BODIHY thin films is likely facilitated by a similar molecular packing effect. Finally, cyclic voltammetry studies confirmed that BODIHY derivatives bearing para-substituted N-aryl groups could be reversibly oxidized (Eox1=0.62–1.02 V vs. Fc/Fc+) to their radical cation forms. Chemical oxidation studies confirmed that para-substituents at the N-aryl groups are required to circumvent radical decomposition pathways. Our findings provide new opportunities and guiding principles for the design of sought-after multifunctional boron difluoride complexes that are photoluminescent in the solid state.  相似文献   
74.
In order to gain new insights into the effect of the π–π stacking interaction of the indole ring with the CuII–phenoxyl radical as seen in the active form of galactose oxidase, we have prepared a CuII complex of a methoxy-substituted salen-type ligand, containing a pendent indole ring on the dinitrogen chelate backbone, and characterized its one-electron-oxidized forms. The X-ray crystal structures of the oxidized CuII complex exhibited the π–π stacking interaction of the indole ring mainly with one of the two phenolate moieties. The phenolate moiety in close contact with the indole moiety showed the characteristic phenoxyl radical structural features, indicating that the indole ring favors the π–π stacking interaction with the phenoxyl radical. The UV/Vis/NIR spectra of the oxidized CuII complex with the pendent indole ring was significantly different from those of the complex without the side-chain indole ring, and the absorption and CD spectra exhibited a solvent dependence, which is in line with the phenoxyl radical–indole stacking interaction in solution. The other physicochemical results and theoretical calculations strongly support that the indole ring, as an electron donor, stabilizes the phenoxyl radical by the π–π stacking interaction.  相似文献   
75.
The design and development of non-noble metal alternatives with superior performance and promising long-term stability that is comparable or even better than those of noble-metal-based catalysts is a significant challenge. Here, we report the thermal-induced phase engineering of non-noble-metal-based nanowires with superior electrochemical activity and stability for the methanol oxidation reaction (MOR) under alkaline conditions. The optimized Cu–Ni nanowires deliver an unprecedented mass activity of 425 mA mg−1, which is 4.3 times higher than that of the untreated one. Detailed catalytic investigations show that the enhanced performance is due to the large active area, the increased number of active sites (NiOOH), and fast methanol electrooxidation kinetics. In addition, the generated hollow feature in the nanowires provides a unique void space to release the volume expansion, where the activity can be maintained for 5 h without a distinct activity decay. The present work emphasizes the importance of precisely phase modulating of nanomaterials for the design of non-noble metal electrocatalysts towards the MOR, which opens up a new pathway for the design of cost-effective electrocatalysts with promising activity and long-term stability.  相似文献   
76.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
77.
Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.  相似文献   
78.
Thermal decarbonylation of the acyl compounds [Mn(CO)5(CORF)] (RF=CF3, CHF2, CH2CF3, CF2CH3) yielded the corresponding alkyl derivatives [Mn(CO)5(RF)], some of which have not been previously reported. The compounds were fully characterized by analytical and spectroscopic methods and by several single-crystal X-ray diffraction studies. The solution-phase IR characterization in the CO stretching region, with the assistance of DFT calculations, has allowed the assignment of several weak bands to vibrations of the [Mn(12CO)4(eq-13CO)(RF)] and [Mn(12CO)4(ax-13CO)(RF)] isotopomers and a ranking of the RF donor power in the order CF3<CHF2<CH2CF3≈CF2CH3. The homolytic Mn−RF bond cleavage in [Mn(CO)5(RF)] at various temperatures under saturation conditions with trapping of the generated RF radicals by excess tris(trimethylsilyl)silane yielded activation parameters ΔH and ΔS that are believed to represent close estimates of the homolytic bond dissociation thermodynamic parameters. These values are in close agreement with those calculated in a recent DFT study (J. Organomet. Chem. 2018 , 864, 12–18). The ability of these complexes to undergo homolytic Mn−RF bond cleavage was further demonstrated by the observation that [Mn(CO)5(CF3)] (the compound with the strongest Mn−RF bond) initiated the radical polymerization of vinylidene fluoride (CH2=CF2) to produce poly(vinylidene fluoride) in good yields by either thermal (100 °C) or photochemical (UV or visible light) activation.  相似文献   
79.
Organic spin-based molecular materials are considered to be attractive for the generation of functional materials with emergent optoelectronic, magnetic, or magneto-conductive properties. However, the major limitations to the utilization of organic spin-based systems are their high reactivity, instability, and propensity for dimerization. Herein, we report the synthesis, characterization, and magnetic and electronic studies of three ambient stable radical ions ( 1 a.+ , 1 b.+ , and 1 c.+ ). The radical ions 1 b.+ and 1 c.+ with BPh4 and BF4 counter anions, respectively, were synthesized in excellent yields by means of anion metathesis of 1 a.+ with Br as its counter anion. Notably, synthesis of 1 a.+ was achieved in an ecofriendly, solvent-free protocol. The radical ions were characterized by means of single-crystal X-ray diffraction studies, which revealed the discrete nature of the radical ions and extensive hydrogen-bonding interactions within the radical ions and with the counter anions. Thus, radical ions can be organized to form infinite supramolecular arrays using weak noncovalent interactions. In addition, the Br, BF4, and BPh4 anions formed diverse types of anion–π interactions with the naphthalene and imide rings of the radical ions. The radical ions were characterized by means of X-band electron paramagnetic resonance (EPR) spectroscopy in solution and in the solid state. Magnetic studies revealed their paramagnetic nature in the range of 10 to 300 K. The radical ions exhibited high resistivity approaching the gigaohm (GΩ) scale. In addition, the radical ions exhibited panchromism.  相似文献   
80.
Oxidative dehydrogenation (ODH) of n-octane was carried out over a vanadium–magnesium oxide catalyst in a continuous flow fixed bed reactor. The catalyst was characterized by ICP–OES, powder XRD and SEM. The catalytic tests were carried out at different gas hourly space velocities (GHSVs), viz. 4000, 6000, 8000, and 10,000 h?1. The best selectivity for octenes was obtained at the GHSV of 8000 h?1, while that for C8 aromatics was attained at the GHSV of 6000 h?1 at high temperatures (500 and 550 °C). The catalytic testing at the GHSV of 10,000 h?1 showed the lowest activity, while that at the GHSV of 4000 h?1 consistently showed the lowest ODH selectivity. Generally, the best ODH performance was obtained by the catalytic testing at the GHSVs of 6000 and 8000 h?1. No phasic changes were observed after the catalytic testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号